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System identification for non-linear dynamical systems could find use in many
applications such as condition monitoring, finite element model validation and determina-
tion of stability. The effectiveness of existing non-linear system identification techniques is
limited by various factors such as the complexity of the system under investigation and the
type of non-linearities present. In this work, the constant level identification approach,
which can identify multi-degree-of-freedom systems featuring any type of non-linear
function, including discontinuous functions, is validated experimentally. The method is
shown to identify accurately an experimental dynamical system featuring two types of
stiffness non-linearity. The full equations of motion are also extracted accurately, even in
the presence of a discontinuous non-linearity.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

System identification has important applications in many engineering fields, such as modal
analysis, control system design and condition monitoring. The main purpose of most
system identification techniques is to develop a mathematical model that fully describes a
given system. This mathematical model can be used to explain the behaviour of the system
and to predict its response to various inputs at different conditions.

During the last couple of decades, system identification for non-linear systems has
become of increasing importance. It is now widely accepted that many, if not most,
engineering systems and processes are non-linear and that their dynamics cannot be fully
captured using linear identification techniques. Hence a number of system identification
methods for nonlinear systems have been proposed such as the NARMAX model [1],
Volterra series representations [2], Hilbert Transform techniques [3], higher order spectra
[4] and the restoring force method [5], which can identify non-linear dynamic systems
given sets of inputs and outputs. Neural network [6] and proper orthogonal decomposition
based [7] approaches have also been proposed. However, these methods are very complex,
difficult to apply and they are not universally valid. For instance, both NARMAX and the
higher order spectra method are incapable of identifying systems with discontinuous
non-linearities, such as bilinear stiffness or freeplay, which are common in vibrating
engineering systems. Additionally, in spite of a number of developments and refinements
[8,9], the application of the restoring force to multi-degree-of-freedom systems is still
problematic.

A very important consideration for any identification of dynamic systems concerns the
form of the resulting mathematical model, which can be either parametric or non-
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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parametric [10]. Parametric models contain exclusively terms with physical meaning which
reflect the true character of the system under investigation. Hence, they are preferable for
the purpose of analyzing and characterizing the behaviour of a given system. Nevertheless,
NARMAX models and restoring force surfaces usually contain both parametric and non-
parametric terms. Neural networks are exclusively non-parametric, hence, models
obtained using these methods contain terms without any physical meaning.

Consequently, there is still a need for a simple, easy to use identification method for
nonlinear systems which can identify systems with many degrees of freedom, continuous
and discontinuous non-linear components and create parametric models. Such a method is
the constant level identification (CLI) approach for the identification of non-linear
dynamical systems [11]. The method is a development of the restoring force technique,
adapted to identify the non-linearity present in a single- or multi-degree-of-freedom system
without the need for curve fitting. The method is flexible enough to be able to deal with a
large class of non-linear systems and functions. Its main limitation is the fact that it can
only deal with systems containing non-linear functions which depend on only one of the
system state variables. As a consequence, the method is considered more suitable for
dynamic systems which contain a single dominant non-linearity, such as the all-moveable
tail surfaces of combat aircraft [12]. However, the method has only been demonstrated on
simulated systems. In this paper, CLI is employed to identify two experimental systems
with two different non-linear functions, namely cubic and bilinear stiffness. The purpose
of this demonstration is to validate the CLI technique on real data and to demonstrate its
effectiveness on systems featuring both continuous and discontinuous non-linearities.

First, the mathematical basis of the method will be briefly explained, and then the
experimental results will be presented.

2. MATHEMATICAL BASIS OF CLI

Linear dynamical systems are usually described by the general equation

M.qqþ C’qqþ Kq ¼ FðtÞ; ð1Þ

where M; C and K are the mass, damping and stiffness matrices, respectively, q is the
displacement vector and F is the excitation force vector. Non-linear systems will, in
general, contain stiffness and damping non-linearities. For such systems, a more general
set of equations can be defined

M.qqþ fð’qq; qÞ ¼ FðtÞ; ð2Þ

where fð’qq; qÞ is the restoring force of the system and can be a linear or a non-linear
function.

The CLI method, whilst maintaining the flexibility of the restoring force method to be
able to deal with all types of non-linearity, avoids the difficulties associated with the
application of the latter approach to multi-degree-of-freedom systems. Use is made of the
fact that, if the non-linear function depends on only one of the state variables then, at an
arbitrary response level, the restoring force due to the non-linearity is constant. The
approach estimates the exact equation of motion of the system by curve-fitting the
response at this chosen response level.

The first crucial aspect of the CLI method is to multiply the equations of motion
throughout by the inverse of the mass matrix, so that the mass matrix is no longer a
quantity that needs to be identified. The restoring force equation becomes

.qqþM�1fðxÞ ¼ M�1F; ð3Þ
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where x is the state vector, given by x ¼ ½’qq q�T and now M�1F must also be treated as an
unknown. The crucial assumption behind the CLI method is that the restoring force
function fðxÞ has linear components and that the non-linear components depend on only

one of the state variables, say the ith component, xi: Then, fðxÞ can be re-written as

fðxÞ ¼ L½ x1 . . . xi�1 xiþ1...x2m �T þ gðxiÞ;

where m is the number of modes (or degrees of freedom) of the system, L is a constant
matrix coefficient of size m � ð2 m � 1Þ and gðxiÞ is a m � 1 vector of linear and/or non-
linear functions which depend only on xi: Then, equation (3) becomes

.qqþM�1L½ x1 . . . xi�1 xiþ1...x2m �T þM�1gðxiÞ ¼ M�1F ð4Þ

keeping in mind that this equation, and hence the CLI method, only applies to systems
where the non-linearity really is a function of only one state variable. One final adjustment
is to write M�1FðtÞ as M�1AwðtÞ where wðtÞ is the p � 1 vector of the measured inputs to
the system, A is a m � p vector of constant amplitudes and FðtÞ ¼ AwðtÞ: Hence, the
governing equation of the CLI approach is obtained as

.qqþM�1L½x1 . . . xi�1 xiþ1...x2m �T þM�1gðxiÞ ¼ M�1AwðtÞ: ð5Þ

Given measurements of .qq 	 ’qq 	 q and w at times tj where xi is a constant, equation (5) can
be expanded in order to solve for the unknown constants #LL ¼ M�1L; N ¼ M�1gðxiÞ and
#AA ¼ M�1A: Expanding for all times tj; equation (5) becomes

x1ðt1Þ . . . xi�1ðt1Þ xiþ1ðt1Þ . . . x2mðt1Þ w1ðt1Þ . . . wpðt1Þ 1
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for k ¼ 1; . . . ;m and where n is the total number of time instances tj: Equation (6) can be
solved to obtain every line of #LL; N and #AA separately. Hence, each of the m equations of
motion is also identified separately. Equation (6) also demonstrates an additional
advantage of multiplying throughout by the inverse of the mass matrix, namely that the
number of unknowns is reduced, speeding up the computation and also improving the
accuracy of the fit.

At the time instances tj where xi is a constant, N is also a constant. However, at a
general time instance, t; N ¼ NðtÞ: The variation of N with time can be obtained once #LL;
NðtjÞ and #AA have been evaluated by re-writing equation (5) as

NðtÞ ¼ �.qq� #LL½ x1 . . . xi�1 xiþ1 . . . x2m �T þ #AAwðtÞ: ð7Þ
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The end result of the CLI procedure is the complete identification of the equations of
motion of a given system in the form

.qqþ #LL½ x1 . . . xi�1 xiþ1 . . . x2m �T þNðtÞ ¼ #AAwðtÞ: ð8Þ

Now define #CC ¼ M�1C and #KK ¼ M�1K: Then #LL ¼ ½ #CC #KK �; but where either #CC or #KK is
missing a column. The missing linear information is imbedded in NðtÞ together with the
non-linear information. Plotting NðtÞ against xiðtÞ will yield the shape of the non-linearity
added to the linear term missing from #LL:

The following considerations need to be taken into account when using the CLI
approach:

* The number of modes, m; may not be known for a real system. In the case of mildly
non-linear systems, preliminary analysis could give an indication of the number of
modes via frequency response function (FRF) plots.

* The location of non-linearities present in the system may not be known in advance. This
can be obtained using a Hilbert transform approach [13]. Alternatively, the CLI
approach can be applied speculatively, i.e., each one of the state variables is assumed to
contain the non-linearity. The CLI technique is then applied for each case. The correct
case is when plots of NðtÞ against xiðtÞ are obtained which are single-valued functions.
If no such case exists, then the non-linearity present in the system depends on more than
one of the system variables and the CLI method cannot be applied.

* In order for the identification process to succeed, the input and output data need to be
interpolated to obtain a set of instances in time where the desired variable, xiðtÞ; has
exactly the same value, say xi ¼ c: Cubic interpolation has been found quite adequate.
The choice of the value of c is quite important since, by choosing c ¼ 0; a large amount
of measurement noise will be included in the identification process. Conversely, if
c ¼ maxðxiÞ then there will not be enough points to solve equations (6). A practical

choice for the identification level is c ¼
ffiffiffiffiffi
x2

i

q
: Nevertheless, the choice of c is usually

dictated by the signal-to-noise ratio of xiðtÞ: The lower this ratio, the higher value of c

must be in order to attempt to minimize the amount of measurement noise included in
the identification process.

* A further consideration regarding the CLI method concerns the effect of performing the
identification procedure at various levels, i.e., applying equation (6) at times tj; where
xi ¼ c1; c2; . . . ; where c1; c2; etc., are various constant values. In the case where a
significant amount of noise is present in the response data, identified models obtained
using a low constant level will be highly suspect because the noise may create artificial
crossings of that level. In these cases, additional identifications must be carried out at
higher constant levels in order to check to what degree the identified model is biased by
noise. In other words, to ensure that the constant level at which the identification
process is carried out is the optimum, a number of levels must be tried out and the level
that yields the least biased model must be chosen. Applications of the CLI method to
simulated systems have shown that, using multiple identification levels, the non-linear
function is correctly identified for a signal-to-noise ratio of up to approximately 0	5.

* The excitation force also needs to be such that it excites all the important features of the
systems, including the non-linearity. Sine-sweep or banded random excitation signals
are suitable, since they allow several frequencies of excitation to be applied to the
system in one test.

* The CLI technique can also work for systems where the non-linear functions depend on
a single combination of more than one state variable, e.g., gðx2 � x1Þ: In this case, the
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identification is performed at time instances where the value of x2ðtÞ � x1ðtÞ is a
constant.

It should be noted that the non-linearities identified by the method need not be single-
valued functions. Hysteresis-type non-linearities can also be identified [11] but, if such a
non-linearity is expected, then the procedure needs to be applied on constant values of xi

with only positive or only negative derivative.

3. EXPERIMENTAL VALIDATION

The CLI method is here demonstrated on a 2-degree-of-freedom (d.o.f.) mass–spring
dynamical system. A photograph of the experimental set-up is shown in Figure 1. Figure 2
shows an idealized diagram of the experimental set-up. The rig consisted of two masses
(M1 and M2) independently supported by a couple of cantilever steel plates with stiffnesses
K1 and K2: The two masses were attached to each other by a coupling spring with stiffness
K12: Each mass was independently excited by means of a shaker driven by a signal
generator, the excitation signals F1 and F2 being measured by means of a force gauge. The
excitation signals used for the experiment were random with a flat spectrum between 10
and 30Hz. One accelerometer on each mass measured the accelerations a1 and a2; which
were then integrated to obtain the displacements y1 and y2: The time duration of the tests
was 4	095 s and the sampling interval 0	001 s.

For the non-linear spring, KNL; three different configurations were tested:

* Linear (KNL ¼ 0)
* Cubic spring attached to mass 2. The cubic spring was chosen as an example of a

continuous non-linear function.
* Freeplay spring attached to mass 2, leading to a bilinear stiffness since the mass

remained attached to the linear cantilever plates. The bilinear stiffness was chosen as an
example of a discontinuous non-linear function.
Figure 1. Picture of experimental set-up.
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Figure 2. Idealized drawing of experimental set-up.
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The cubic stiffness was implemented by means of a steel ruler under transverse loading
and the freeplay by means of a steel ring moving between two pegs separated by a distance
d: It should be noted that the cubic experiments were carried out on a slightly different
system to the one on which the linear and bilinear tests were carried out. Specifically, the
basic rig was the same but, in the case of the cubic experiments, there were four cantilever
plates supporting each mass while, in the case of the linear and bilinear experiments, there
were only two cantilever plates. Additionally, during the cubic experiments, the forces
applied to the two masses were not forced to be of the same amplitude. As a result, the
identified matrices for the cubic system are significantly different to those for the linear
and bilinear systems. Nevertheless, all of the experiments were suitable for the validation
of the CLI method. For all the applications of the CLI technique described below, the
chosen constant level was equal to the root-mean-square value of the relevant signal.

3.1. IDENTIFICATION OF LINEAR SYSTEM

The linear system was identified using standard frequency domain analysis techniques
based on the curve fitting of the FRF as well as the CLI method. It should be noted that
the CLI procedure is inefficient when applied to linear systems since it assumes non-
linearity, however, it does yield an accurate identification. The FRF results revealed that
the linear system has two natural frequencies at 15	5 and 24	7Hz.

In order to apply the CLI approach, measurements of acceleration, displacement and
velocity are required. As the responses of the 2-d.o.f. system were measured using
accelerometers, only acceleration data were available. The velocity and displacement
responses were obtained by integrating the acceleration data in the frequency domain. In
order to eliminate drift in the integrated signals, the Fourier transforms of the
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accelerations were set to zero at frequencies below 5Hz. Additionally, the input signals
were designed as 95% bursts in order to avoid leakage.

The CLI technique was applied to the linear system assuming that there was a non-
linear function depending on the displacement of the second mass, y2: The resulting
damping and stiffness matrices were

#CC ¼
2	7230 �0	7400

�0	6407 3	2747

" #
; #KK ¼ 104

1	0996 0

�0	2798 0

" #
; #AA ¼

0	3475 0	0000
0	0000 0	3350

( )
: ð9Þ

Note #KK contains zeroes in the second column since that column represents y2: Also note
that matrix #AA is diagonal and that its two diagonal elements are almost equal, which
was expected since there were only two input signals with the same amplitude. Then,
equation (7) was applied to obtain the variation of N with y2; which is shown in Figure 3.
Note that both components of N are linear, denoting that the system is linear. By
measuring the slope of the two lines, the stiffness matrix could be completed:

#KK ¼ 104
1	0996 �0	3152

�0	2798 1	5863

" #
:

Note that reciprocity is approximately satisfied since the stiffness matrix is nearly
symmetric. The full equations of motion of the linear system were then obtained as

1 0

0 1

" #
.yy1

.yy2

( )
þ

2	7320 �0	7400
�0	6407 3	2747

" #
’yy1

’yy2

( )
þ 104

1	0996 �0	3152
�0	2798 1	5863

" #
y1

y2

( )

¼
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Figure 3. Nðy2Þ (N) against y2 (m) for linear system.
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The eigenfrequencies of the identified system of equations were found to be 15	6 and
20	9Hz, i.e., very close to the values obtained from the FRF analysis (15	5 and 20	7Hz).
Hence, the CLI identification of the linear system was successful. A final check of the
validity of the identified equations was performed by applying the same excitation forces
to both the real system and the identified model and then comparing the resulting
acceleration signals. The identified equations of motion were integrated numerically using
a Runge–Kutta approach to yield the response to the chosen excitation signals. A portion
of the acceleration signals of mass 2 is plotted in Figure 4. The two signals are almost
identical.

3.2. IDENTIFICATION OF SYSTEM WITH CUBIC STIFFNESS

A cubic spring was attached to mass 2 in the form of a steel ruler under transverse
loading. The CLI method was applied to randomly forced response data from the
experimental rig. Figures 5 and 6 show the identified N1ðy2Þ and N2ðy2Þ term variation
plotted against the displacement of mass 2. The curve in Figure 5 is still linear but Figure 6
shows a slightly cubic variation. The identified matrices were:

#CC ¼
5	5302 �0	4777

�0	4023 4	1891

" #
; #KK ¼ 104

2	2825 0

�0	3093 0

" #
;

1	5603 0	0000
0	0000 2	7629

( )
:

As in the linear case, the equations of motion were completed by curve fitting the variation
of N with y2: Since, N1ðy2Þ is linear (see Figure 5), it was curve fitted by a first degree
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Figure 5. N1ðy2Þ (N) against y2 (m) for system with cubic stiffness.
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polynomial. The resulting polynomial was

N1ðy2Þ ¼ �0	3081� 104y2 � 0	0184: ð10Þ

Note that the first order coefficient, 0:381� 104, is approximately equal to the Kð2; 1Þ
term, thus satisfying reciprocity. N2ðy2Þ was estimated by curve fitting Figure 6 by a cubic
polynomial:

N2ðy2Þ ¼ 1	3036� 109y3
2 þ 5	7876� 105y2

2 þ 2	2555� 104y2 � 0	1067: ð11Þ

The displacement y2 is of order Oð10�3Þ and N2ðy2Þ is of order Oð10Þ: The terms in
equation (11) are of order:

y3
2 : Oð1Þ; y2

2 : Oð10�1Þ; y1
2 : Oð10Þ; y0

2 : Oð10�1Þ:

Hence, the zeroth and second order terms can be neglected and, since the first order term is
due to the linear cantilever springs, the cubic stiffness caused by the steel ruler is given by
Kcubic ¼ 1	3� 109y3

2: After substituting for term #KK1;2 the slope of equation (10) and for
#KK2;2; the first order coefficient of equation (11), the equations of motion were obtained as

1 0

0 1

" #
.yy1

.yy2

( )
þ

5	5302 �0	4777
�0	4023 4	1891

" #
’yy1

’yy2

( )
þ 104

2	2825 �0	3081
�0	3093 2	2555

" #
y1

y2

( )

þ
0

1	3036� 109y3
2

( )
¼

1	5603w1ðtÞ
2	7629w2ðtÞ

( )
: ð12Þ
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This set of equations was verified by calculating its response to the same excitation
signals that were used on the experimental system. Figure 7 compares the accelerations
obtained from the identified equations and the actual system. It is obvious that the
comparison is very favourable.

3.3. IDENTIFICATION OF SYSTEM WITH BILINEAR STIFFNESS

A freeplay spring was attached to mass 2 in the form of a steel ring moving between two
restraining pegs at a distance d apart. Mass 2 was still supported on the cantilever plates
and, hence, the resulting combined spring attached to mass 2 was bilinear. The CLI
method was applied to randomly forced response data from the experimental rig. Two
cases were investigated, one where d ¼ 0	5mm and one where d ¼ 1	05mm. The excitation
amplitudes for the two cases were equal.

It should be noted here that, due to the design of the freeplay spring, the measured
acceleration signals exhibited quite a lot of rattling. The rattling was caused by the fact
that the steel ring was not perfectly parallel to the two pegs resulting in repeated impacts of
the ring on the pegs. A sample of the acceleration signals is shown in Figure 8. The rattling
behaviour was more apparent in the d ¼ 0	5mm case because the steel ring was impacting
on the pegs at higher velocities than in the d ¼ 1	05mm case. Nevertheless, the integration
process smoothed out the rattling effect on the calculated velocity and displacement
signals, since integration is a form of averaging. Hence, a part of the non-linear behaviour
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of the experimental system was not captured by the identification process. In order to
identify the rattling behaviour, velocity and displacement sensors would have been
required in addition to the accelerometers.

The identified matrices for the d ¼ 0	5mm case were:

#CC ¼
2	7564 �0	4500

�0	4791 3	6802

" #
; #KK ¼ 104

1	0833 0

�0	2810 0

" #
; #AA ¼

0	3472 0	0000
0	0000 0	3288

( )
:

The identified matrices for the d ¼ 1	05mm case were:

#CC ¼
2	7471 �0	6596

�0	6093 3	8485

" #
; #KK ¼ 104

1	1006 0

�0	2795 0

" #
; #AA ¼

0	3486 0	0000
0	0000 0	3303

( )
:

In both cases, all the identified matrices are approximately equal to the matrices of the
linear system, showing that the bilinear stiffness only affects Nðy2Þ: The off-diagonal
damping terms for the d ¼ 0	5mm appear to be slightly lower than the corresponding
terms obtained from the linear and d ¼ 1	05mm.

The plots of N1ðy2Þ against y2 for both cases were linear, as in the cubic stiffness
example. Their slopes where #KK1;2 ¼ �3	1797� 103 for d ¼ 0	5mm and #KK1;2 ¼ �3	1209�
10�4 for d ¼ 1	05mm.

Figures 9 and 10 show the identified non-linear term, N2ðy2Þ; variation for each case,
respectively, plotted against the displacement of mass 2. Figure 9 shows the force–
displacement plot for the d ¼ 0	5mm case. By curve fitting the plot, it was found that there
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are three piecewise-linear stiffnesses, the values of which are

Kout;left ¼ 1	9047� 104 for y25� 2	0� 10�4;

Kin ¼ 1	5128� 104 for � 2	0� 10�45y253	0� 10�4;

Kout;right ¼ 2	1330� 104 for y2 > 3	0� 10�4:

The region between the two dashed lines in Figure 9 will be called the inner region, the
other two regions being called the left and right outer regions. The width of the inner
region is 0	5mm, i.e., equal to d but the region is not centred around zero. The inner
stiffness, i.e., the stiffness between the two dotted lines, Kin; is very close to the linear
stiffness, while the outer stiffnesses are between 26 and 41% higher than the inner stiffness.
Hence, the non-linear function is given by

N2ðy2Þ ¼
1	9047� 104y2 þ 0	7837 if y25� 2	0� 10�4;

1	5128� 104y2 if � 2	0� 10�45y253	0� 10�4;

2	1330� 104y2 � 1	8607 if y2 > 3	0� 10�4:

8><
>: ð13Þ

With equation (13), a complete set of identified equations of motion is obtained. The inner
stiffness of the bilinear function is essentially the linear stiffness hence it can be moved to
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the stiffness matrix, yielding

1 0

0 1

" #
.yy1

.yy2

( )
þ

2	7564 �0	4500
�0	4791 3	6802

" #
’yy1

’yy2

( )
þ 104

1	0833 �0	3180
�0	2810 1	5128

" #
y1

y2

( )

þ

0

0	3917� 104y2 þ 0	7837 if y25� 2	0� 10�4

0 if � 2	0� 10�45y253	0� 10�4

0	6202� 104y2 � 1	8607 if y2 > 3	0� 10�4

8><
>:

8>>>><
>>>>:

9>>>>=
>>>>;

¼
0	3472w1ðtÞ
0	3288w2ðtÞ

( )
:

ð14Þ

The system described by these equations is very close to the actual experimental system, as
can be seen from Figure 11, where the acceleration responses of the experimental system
and the identified equations of motion to the same forcing signal are plotted against time.
The agreement between the two responses is very good.

For the d ¼ 1	05mm case, the force–displacement plot of Figure 10 shows the same
picture as that of Figure 9, the main difference being that the distance between the dotted
lines is 1	05mm. Again, the inner region is not centred and there are three stiffnesses, given
by

Kout;left ¼ 1	9994� 104 for y25� 5	0� 10�4;

Kin ¼ 1	5285� 104 for � 5	0� 10�45y255	5� 10�4;

Kout;right ¼ 2	1850� 104 for y2 > 5	5� 10�4:



−1.5 −1 −0.5 0 0.5 1 1.5
−25

−20

−15

−10

−5

0

5

10

15

20

25

× 10−3

N
2(

y 2
)

y2 

Figure 10. N2ðy2Þ (N) against y2 (m) for system with freeplay stiffness, d ¼ 1	05mm.
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Note that all three stiffness values are approximately equal to the values obtained for the
d ¼ 0	5mm case. This is logical since the only difference between the two cases is the width
of the bilinear region; the stiffnesses are unchanged. The non-linear function for the
d ¼ 1	05mm case could then be expressed as

N2ðy2Þ ¼
1	9994� 104y2 þ 2	4574 if y25� 5	0� 10�4;

1	5285� 104y2 if � 5	0� 10�45y255	5� 10�4;

2	1850� 104y2 � 3	4083 if y2 > 5	0� 10�4:

8><
>: ð15Þ

Again, using equation (15), a complete set of identified equations of motion can be
obtained, again by moving the inner stiffness to the stiffness matrix

1 0

0 1

" #
.yy1

.yy2

( )
þ

�2	7471 �0	6596
�0	6093 �3	8485

" #
’yy1

’yy2

( )
þ 104

�1	1006 �0	3121
�0	2795 �1	5285

" #
y1

y2

( )

þ

0

0	4709� 104y2 þ 2	4574 if y25� 5	0� 10�4

0 if � 5	0� 10�45y255	5� 10�4

0	6565� 104y2 � 3	4083 if y2 > 5	5� 10�4

8><
>:

8>>>><
>>>>:

9>>>>=
>>>>;

¼
0	3486w1ðtÞ
0	3303w2ðtÞ

( )
:
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Figure 11. Comparison of experimental and identified responses for system with bilinear stiffness, d ¼ 0	5mm.
}}, Identification; *}*, experiment.
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The system described by these equations is also very close to the actual experimental
system, as can be seen in Figure 12 where the acceleration responses of the real and
identified systems to the same forcing signal are plotted against time. The agreement
between the two responses is clearly very good.

4. CONCLUSIONS

In this paper, the constant level method for the identification of non-linear systems was
evaluated on an experimental dynamical systems with two types of non-linearity, cubic
and bilinear stiffness. The CLI method is a simple identification method that can identify
both the equations of motion and the non-linear functions of systems with non-linear
terms that depend on only one of the state variables. The approach was found to identify
successfully the experimental system given forced response acceleration data. The cases
that were identified included a linear case, a case with cubic stiffness and two cases with
bilinear stiffness. In all cases, the identified equations of motion were numerically
integrated and the resulting responses were compared to the measured responses, yielding
very good agreement. It was concluded that the CLI technique is a very effective method
for identifying both continuous and discontinuous non-linearities. Further work will
concern the experimental validation of the method on more complex systems with many
degrees of freedom.
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Figure 12. Comparison of experimental and identified responses for system with bilinear stiffness,
d ¼ 1	05mm. }}, Identification; *}*, experiment.
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